organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Chloro-11a-phenyl-2,3,5,10,11,11ahexahydro-1*H*-pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

Rafael Tamazyan,^a* Armen Ayvazyan,^a Ashot Martirosyan,^b Gohar Harutyunyan^b and Vahan Martirosyan^b

^aMolecular Structure Research Center, National Academy of Sciences RA, Azatutyan Avenue 26, 375014 Yerevan, Republic of Armenia, and ^bInstitute of Fine Organic Chemistry, National Academy of Sciences RA, Azatutyan Avenue 26, 375014 Yerevan, Republic of Armenia Correspondence e-mail: rafael@msrc.am

Received 29 January 2008; accepted 8 February 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; *R* factor = 0.047; *wR* factor = 0.122; data-to-parameter ratio = 16.8.

The title compound, $C_{18}H_{15}CIN_2O_2$, is a potential human immunodeficiency virus type-1 (HIV-1) non-nucleoside reverse transcriptase inhibitor. The pyrrolidine ring adopts an envelope and the diazepine ring a boat conformation. In the crystal structure, two isomers (*R* and *S*) form centrosymmetric dimers *via* N-H···O hydrogen bonds.

Related literature

For details of the pharmacological properties of this family of compounds, see: De Clercq (1996). For the crystal structures of some analogues of the title compound, see: Karapetyan *et al.* (2002); Tamazyan *et al.* (2002, 2007). For reference structural data, see Allen *et al.* (1987).

Experimental

Crystal data $C_{18}H_{15}CIN_2O_2$ $M_r = 326.77$

Triclinic, $P\overline{1}$ a = 8.9749 (18) Å

b = 9.2184 (18) Å	Z = 2
c = 9.912 (2) Å	Mo $K\alpha$ radiation
$\alpha = 86.90 (3)^{\circ}$	$\mu = 0.26 \text{ mm}^{-1}$
$\beta = 71.35(3)^{\circ}$	T = 293 (2) K
$\gamma = 88.27 (3)^{\circ}$	$0.35 \times 0.32 \times 0.28 \text{ mm}$
V = 775.8 (3) Å ³	
Data collection	
Dura concenton	
Enraf–Nonius CAD-4	3148 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm int} = 0.035$
Absorption correction: none	3 standard reflections
7347 measured reflections	frequency: 180 min
4514 independent reflections	intensity decay: none
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.046$	268 parameters
$wR(F^2) = 0.121$	All H-atom parameters refined
S = 1.02	$\Delta \rho_{\rm max} = 0.27 \text{ e } \text{\AA}^{-3}$
4514 reflections	$\Delta \rho = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N4-H4\cdots O12^{i}$	0.85 (2)	2.35 (2)	2.997 (2)	133 (2)
Symmetry code: (i) -	-x + 2, -v, -z +	- 2.		

Data collection: *DATCOL* in *CAD-4* (Enraf–Nonius, 1988); cell refinement: *LS* in *CAD-4*; data reduction: *HELENA* (Spek, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXTL*.

This research was carried out under the framework of the Armenian Science and Education Foundation (ANSEF grant No. PS-chemorg-907). The authors express their thanks to ANSEF.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2462).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- De Clercq, E. (1996). Rev. Med. Virol. 6, 97-117.
- Enraf-Nonius (1988). CAD-4 Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Karapetyan, H., Tamazyan, R., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, 0399–0401.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (1997). HELENA. University of Utrecht, The Netherlands.
- Tamazyan, R., Ayvazyan, A., Martirosyan, A., Martirosyan, V. & Schinazi, R. (2007). Acta Cryst. E63, 03967.
- Tamazyan, R., Karapetyan, H., Martirosyan, A., Hovhannesyan, V. & Gasparyan, S. (2002). Acta Cryst. C58, o386–o388.

supplementary materials

Acta Cryst. (2008). E64, o587 [doi:10.1107/S160053680800408X]

7-Chloro-11a-phenyl-2,3,5,10,11,11a-hexahydro-1*H*-pyrrolo[2,1-*c*][1,4]benzodiazepine-5,11-dione

R. Tamazyan, A. Ayvazyan, A. Martirosyan, G. Harutyunyan and V. Martirosyan

Comment

Interest in X-ray structural investigation of title compound, (I), Fig. 1, is stimulated by its potentially HIV-1 RT inhibition properties. These compounds belong to a family of non-nucleoside reverse transcriptase inhibitors (NNRTIS).

All intramolecular interatomic distances in molecule are in good agreement with their mean statistical values (Allen *et al.*, 1987). In the crystal structure dimers are formed by (*R* and S) optical isomers of molecules of (I) *via* O12···H4ⁱ—N4ⁱ and O12ⁱ…H4—N4 double hydrogen bonding (Table 1, Fig.2).

Experimental

A solution of 2-phenyl-2-pyrrolidinecarboxylic acid (0.01 mol) and 6-chloro-1,4-dihydro-2*H*-3,1-benzoxazine-2,4-dione (0.01 mol) in dry DMF (5 ml) was boiled for 4 h. After cooling in an ice bath the title compound formed as a colourless precipitate and was separated by filtration and washed with ethylacetate. The compound as synthesized was a racemic mixture. Crystals were grown from an ethanol solution of the compound.

Refinement

Hydrogen atoms were located in a difference map and refined freely with isotropic thermal parameters.

Figures

Fig. 1. A view of molecule with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.

Fig. 2. The formation dimers of molecules *via* hydrogen bonding. For clarity only those H atoms participating in hydrogen bonding are depicted. Symmetry code: (i) 2 - x, -y, 2 - z

7-Chloro-11a-phenyl-2,3,5,10,11,11a-hexahydro-1H- pyrrolo[2,1-c][1,4]benzodiazepine-5,11-dione

Crystal data	
C ₁₈ H ₁₅ ClN ₂ O ₂	Z = 2
$M_r = 326.77$	F(000) = 340
Triclinic, <i>P</i> T	$D_{\rm x} = 1.399 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 8.9749 (18) Å	Cell parameters from 22 reflections
b = 9.2184 (18) Å	$\theta = 12.6 - 16.6^{\circ}$
c = 9.912 (2) Å	$\mu = 0.26 \text{ mm}^{-1}$
$\alpha = 86.90 \ (3)^{\circ}$	T = 293 K
$\beta = 71.35 \ (3)^{\circ}$	Prism, colourless
$\gamma = 88.27 (3)^{\circ}$	$0.35 \times 0.32 \times 0.28 \text{ mm}$
$V = 775.8 (3) \text{ Å}^3$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.035$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
graphite	$h = -12 \rightarrow 12$
$\theta/2\theta$ scans	$k = -12 \rightarrow 12$
7347 measured reflections	$l = -13 \rightarrow 13$
4514 independent reflections	3 standard reflections every 180 min
3148 reflections with $I > 2\sigma(I)$	intensity decay: none

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.121$	All H-atom parameters refined
<i>S</i> = 1.02	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0496P)^{2} + 0.2193P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4514 reflections	$(\Delta/\sigma)_{max} < 0.001$
268 parameters	$\Delta \rho_{max} = 0.27 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	z	$U_{\rm iso}*/U_{\rm eq}$
C2	0.70626 (17)	0.27403 (17)	1.00932 (16)	0.0333 (3)
C3	0.66409 (19)	0.11255 (18)	1.04089 (17)	0.0389 (3)
C5	0.91077 (18)	0.04305 (16)	0.85230 (16)	0.0343 (3)
C6	0.9468 (2)	-0.05252 (19)	0.74145 (19)	0.0432 (4)
C7	1.0802 (2)	-0.0350 (2)	0.6255 (2)	0.0488 (4)
C8	1.1788 (2)	0.0798 (2)	0.61835 (19)	0.0470 (4)
C9	1.1492 (2)	0.1717 (2)	0.72885 (19)	0.0418 (4)
C10	1.01455 (17)	0.15430 (16)	0.84775 (16)	0.0332 (3)
C11	0.99809 (17)	0.25083 (15)	0.96767 (16)	0.0319 (3)
C14	0.8259 (2)	0.37447 (19)	1.17444 (18)	0.0391 (3)
C15	0.6494 (2)	0.3646 (2)	1.24567 (19)	0.0493 (4)
C16	0.5879 (2)	0.3677 (2)	1.11921 (19)	0.0448 (4)
C17	0.71935 (17)	0.32632 (16)	0.85722 (16)	0.0335 (3)
C18	0.8016 (2)	0.45256 (19)	0.79868 (18)	0.0405 (4)
C19	0.8104 (2)	0.5045 (2)	0.6632 (2)	0.0519 (4)
C20	0.7365 (3)	0.4332 (2)	0.5842 (2)	0.0571 (5)
C21	0.6523 (3)	0.3101 (2)	0.6421 (2)	0.0562 (5)
C22	0.6436 (2)	0.2556 (2)	0.7781 (2)	0.0439 (4)
Cl	1.33908 (7)	0.10803 (8)	0.46554 (6)	0.0735 (2)
H4	0.745 (2)	-0.072 (2)	0.987 (2)	0.052 (6)*
H6	0.874 (2)	-0.135 (2)	0.747 (2)	0.047 (5)*
H7	1.101 (3)	-0.097 (2)	0.551 (2)	0.062 (6)*
Н9	1.219 (2)	0.246 (2)	0.725 (2)	0.049 (5)*
H18	0.851 (2)	0.504 (2)	0.853 (2)	0.048 (5)*
H19	0.864 (3)	0.590 (3)	0.625 (2)	0.065 (7)*
H20	0.745 (3)	0.481 (2)	0.482 (3)	0.064 (6)*
H21	0.599 (3)	0.259 (2)	0.595 (2)	0.058 (6)*
H22	0.584 (2)	0.174 (2)	0.816 (2)	0.051 (6)*
H14A	0.856 (2)	0.473 (2)	1.1500 (19)	0.040 (5)*
H15A	0.608 (3)	0.445 (3)	1.311 (2)	0.065 (6)*
H16A	0.596 (2)	0.467 (2)	1.080 (2)	0.052 (6)*
H14B	0.886 (2)	0.328 (2)	1.233 (2)	0.048 (5)*
H15B	0.623 (2)	0.270 (2)	1.301 (2)	0.054 (6)*
H16B	0.484 (3)	0.331 (2)	1.139 (2)	0.055 (6)*
N1	0.85316 (15)	0.29356 (14)	1.04452 (13)	0.0327 (3)
N4	0.77286 (16)	0.01605 (16)	0.96731 (15)	0.0390 (3)
012	1.11592 (13)	0.28878 (12)	0.99545 (13)	0.0410 (3)
013	0.54222 (16)	0.07208 (16)	1.12946 (15)	0.0604 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C2	0.0302 (7)	0.0378 (8)	0.0323 (7)	-0.0007 (6)	-0.0102 (5)	-0.0035 (6)
C3	0.0373 (8)	0.0440 (9)	0.0352 (8)	-0.0102 (6)	-0.0106 (6)	-0.0001 (6)
C5	0.0389 (8)	0.0298 (7)	0.0351 (7)	0.0016 (6)	-0.0134 (6)	0.0008 (6)
C6	0.0543 (10)	0.0354 (8)	0.0433 (9)	0.0004 (7)	-0.0199 (8)	-0.0040(7)
C7	0.0610 (11)	0.0468 (10)	0.0399 (9)	0.0125 (8)	-0.0178 (8)	-0.0093 (8)
C8	0.0423 (9)	0.0553 (11)	0.0373 (8)	0.0095 (8)	-0.0055 (7)	0.0000 (8)
C9	0.0352 (8)	0.0438 (9)	0.0437 (9)	0.0006 (7)	-0.0092 (7)	0.0006 (7)
C10	0.0324 (7)	0.0316 (7)	0.0359 (7)	0.0017 (5)	-0.0118 (6)	-0.0001 (6)
C11	0.0342 (7)	0.0263 (7)	0.0361 (7)	-0.0030 (5)	-0.0131 (6)	0.0040 (5)
C14	0.0480 (9)	0.0360 (8)	0.0367 (8)	0.0009 (7)	-0.0174 (7)	-0.0070 (7)
C15	0.0494 (10)	0.0602 (12)	0.0365 (9)	0.0050 (9)	-0.0102 (7)	-0.0112 (8)
C16	0.0394 (9)	0.0540 (11)	0.0407 (9)	0.0087 (8)	-0.0115 (7)	-0.0118 (8)
C17	0.0310 (7)	0.0363 (8)	0.0343 (7)	0.0047 (6)	-0.0119 (6)	-0.0050 (6)
C18	0.0417 (9)	0.0405 (9)	0.0418 (9)	-0.0001 (7)	-0.0168 (7)	-0.0032 (7)
C19	0.0563 (11)	0.0507 (11)	0.0463 (10)	-0.0007 (9)	-0.0147 (8)	0.0080 (8)
C20	0.0711 (13)	0.0641 (13)	0.0382 (9)	0.0087 (10)	-0.0213 (9)	-0.0014 (9)
C21	0.0687 (13)	0.0618 (12)	0.0508 (11)	0.0060 (10)	-0.0354 (10)	-0.0148 (9)
C22	0.0462 (9)	0.0440 (9)	0.0467 (9)	-0.0005 (7)	-0.0215 (8)	-0.0068 (8)
Cl	0.0554 (3)	0.0986 (5)	0.0498 (3)	0.0051 (3)	0.0065 (2)	-0.0053 (3)
N1	0.0349 (6)	0.0337 (6)	0.0318 (6)	-0.0002 (5)	-0.0134 (5)	-0.0037 (5)
N4	0.0418 (7)	0.0314 (7)	0.0417 (7)	-0.0078 (5)	-0.0106 (6)	0.0026 (6)
012	0.0371 (6)	0.0362 (6)	0.0532 (7)	-0.0047 (4)	-0.0189 (5)	-0.0019 (5)
O13	0.0519 (8)	0.0631 (9)	0.0522 (8)	-0.0217 (7)	0.0050 (6)	-0.0049 (6)

Geometric parameters (Å, °)

C2—N1	1.4858 (19)	C14—C15	1.517 (3)
C2—C17	1.527 (2)	C14—H14A	0.956 (19)
C2—C3	1.538 (2)	C14—H14B	0.99 (2)
C2—C16	1.539 (2)	C15—C16	1.522 (3)
C3—O13	1.217 (2)	C15—H15A	0.99 (2)
C3—N4	1.356 (2)	C15—H15B	1.00(2)
C5—C10	1.395 (2)	C16—H16A	0.97 (2)
C5—C6	1.396 (2)	C16—H16B	0.96 (2)
C5—N4	1.407 (2)	C17—C22	1.387 (2)
C6—C7	1.375 (3)	C17—C18	1.393 (2)
С6—Н6	1.010 (19)	C18—C19	1.380 (3)
С7—С8	1.385 (3)	C18—H18	0.95 (2)
С7—Н7	0.93 (2)	C19—C20	1.378 (3)
C8—C9	1.374 (3)	С19—Н19	0.94 (2)
C8—Cl	1.7370 (19)	C20—C21	1.376 (3)
C9—C10	1.398 (2)	С20—Н20	1.06 (2)
С9—Н9	0.93 (2)	C21—C22	1.392 (3)
C10-C11	1.490 (2)	C21—H21	0.92 (2)
C11—O12	1.2391 (18)	C22—H22	0.92 (2)

supplementary materials

C11—N1	1.340 (2)	N4—H4	0.85 (2)
C14—N1	1.472 (2)		
N1—C2—C17	113.17 (12)	C14—C15—C16	102.64 (15)
N1—C2—C3	106.65 (12)	C14—C15—H15A	111.5 (13)
C17—C2—C3	113.09 (13)	С16—С15—Н15А	113.8 (13)
N1—C2—C16	101.84 (12)	C14—C15—H15B	110.0 (12)
C17—C2—C16	111.26 (13)	C16—C15—H15B	109.7 (12)
C3—C2—C16	110.18 (14)	H15A—C15—H15B	109.1 (18)
O13—C3—N4	121.24 (16)	C15—C16—C2	104.63 (14)
O13—C3—C2	122.47 (16)	С15—С16—Н16А	107.3 (12)
N4—C3—C2	116.26 (13)	C2—C16—H16A	107.6 (12)
C10—C5—C6	119.46 (15)	С15—С16—Н16В	115.7 (13)
C10—C5—N4	123.50 (14)	C2—C16—H16B	109.7 (13)
C6—C5—N4	116.96 (15)	H16A—C16—H16B	111.4 (18)
C7—C6—C5	120.84 (17)	C22—C17—C18	118.84 (15)
С7—С6—Н6	119.9 (11)	C22—C17—C2	121.50 (15)
С5—С6—Н6	119.3 (11)	C18—C17—C2	119.56 (14)
C6—C7—C8	119.40 (17)	C19—C18—C17	120.52 (17)
С6—С7—Н7	1202(14)	C19—C18—H18	119.7(12)
C8—C7—H7	120.2(14)	C17—C18—H18	119.8 (12)
C9 - C8 - C7	120.7(17)	C_{20} C_{19} C_{18}	120.54(19)
C9 - C8 - C1	120.40(15)	$C_{20} = C_{19} = H_{19}$	119 1 (14)
C7-C8-C1	118 82 (15)	C18—C19—H19	120 3 (14)
C8 - C9 - C10	12023(17)	$C_{21} - C_{20} - C_{19}$	119 41 (18)
С8—С9—Н9	120.22(12)	$C_{21} = C_{20} = H_{20}$	1240(12)
C10-C9-H9	119.6 (12)	C19 - C20 - H20	1165(12)
C5-C10-C9	119.18 (15)	$C_{20} = C_{21} = C_{22}$	120 71 (19)
C_{5} C_{10} C_{11}	123 97 (14)	$C_{20} = C_{21} = H_{21}$	123.0(13)
C9-C10-C11	116 69 (14)	$C_{22} = C_{21} = H_{21}$	116 3 (14)
012-011-011	121 43 (14)	$C_{12} = C_{21} = C_{121}$	119.96 (18)
012 - C11 - C10	121.13(11) 120.38(14)	C17 - C22 - C21	120.9 (13)
N1_C11_C10	118 18 (13)	$C_{21} - C_{22} - H_{22}$	119.1 (13)
N1-C14-C15	103 15 (14)	C11 - N1 - C14	121 27 (13)
N1-C14-H14A	110.2(11)	C_{11} N_{1} C_{2}	126.30(12)
C15-C14-H14A	110.6 (11)	C14 - N1 - C2	112 36 (12)
N1—C14—H14B	109.6 (11)	$C_3 = N_4 = C_5$	128 71 (14)
C15-C14-H14B	112 6 (11)	C3—N4—H4	113.7(14)
H14A—C14—H14B	110.4 (15)	C5—N4—H4	116.9 (14)
N1—C2—C3—O13	118 43 (17)	C_{3} C_{2} C_{17} C_{22}	23 3 (2)
C17—C2—C3—O13	-116.54 (18)	C16-C2-C17-C22	-101.29(18)
C16—C2—C3—O13	8.7 (2)	N1—C2—C17—C18	-38.96 (19)
N1—C2—C3—N4	-59.63 (17)	C3—C2—C17—C18	-160.38(14)
C17—C2—C3—N4	65.40 (18)	C16—C2—C17—C18	75.00 (18)
C16—C2—C3—N4	-169.39 (14)	C22—C17—C18—C19	-1.4 (2)
C10—C5—C6—C7	-2.5 (2)	C2-C17-C18-C19	-177.78 (16)
N4—C5—C6—C7	-179.40 (15)	C17—C18—C19—C20	0.7 (3)
C5—C6—C7—C8	-0.6 (3)	C18—C19—C20—C21	0.6 (3)
C6—C7—C8—C9	3.3 (3)	C19—C20—C21—C22	-1.2 (3)

supplementary materials

C6—C7—C8—Cl	-175.46 (14)	C18—C17—C22—C21	0.8 (3)
C7—C8—C9—C10	-2.9 (3)	C2—C17—C22—C21	177.10 (16)
Cl-C8-C9-C10	175.88 (13)	C20-C21-C22-C17	0.5 (3)
C6—C5—C10—C9	2.9 (2)	O12-C11-N1-C14	-6.6 (2)
N4—C5—C10—C9	179.60 (14)	C10-C11-N1-C14	172.75 (13)
C6-C5-C10-C11	-172.22 (14)	O12-C11-N1-C2	170.27 (13)
N4C5C10C11	4.5 (2)	C10-C11-N1-C2	-10.4 (2)
C8—C9—C10—C5	-0.3 (2)	C15-C14-N1-C11	-165.56 (14)
C8—C9—C10—C11	175.20 (15)	C15—C14—N1—C2	17.18 (18)
C5-C10-C11-O12	141.38 (15)	C17—C2—N1—C11	-50.6 (2)
C9-C10-C11-O12	-33.9 (2)	C3—C2—N1—C11	74.38 (18)
C5-C10-C11-N1	-38.0 (2)	C16—C2—N1—C11	-170.11 (15)
C9-C10-C11-N1	146.80 (14)	C17—C2—N1—C14	126.50 (14)
N1-C14-C15-C16	-34.22 (19)	C3—C2—N1—C14	-108.52 (14)
C14—C15—C16—C2	39.5 (2)	C16—C2—N1—C14	6.98 (17)
N1—C2—C16—C15	-28.50 (18)	O13—C3—N4—C5	172.76 (16)
C17—C2—C16—C15	-149.37 (15)	C2-C3-N4-C5	-9.1 (2)
C3—C2—C16—C15	84.38 (18)	C10-C5-N4-C3	43.9 (2)
N1—C2—C17—C22	144.75 (15)	C6—C5—N4—C3	-139.36 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N4—H4…O12 ⁱ	0.85 (2)	2.35 (2)	2.997 (2)	133 (2)
Symmetry codes: (i) $-x+2$, $-y$, $-z+2$.				

